SPH 4C - Pully and Lever Activity

Start by googling "force lever labs physics interactive" Click on something similiar to below or type it in.

http://www.edinformatics.com/il/il_physics.htm

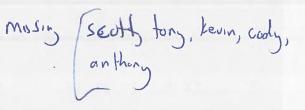
click on pulleys

PULLEY FAMILY:

You must use four calculations to show the effect of using more pulleys.

- 1. G- is the hanging mass and G' is the mass of the hanging pulleys.
- 2. You must choose four different masses for G and G' then anyone else.
- 3. Calculate with each of the four different masses, the Effort Force needed. Show the calculations. For each mass you must use 2, 4, and 6 pulleys.
- 4. In total you should have 3 calculations.

Purpose: To determine the mechanical advantage of simple and compound pulley systems.


1. Complete the following table.

Masses 1 (G and G')

	Effort (N)	Load (N)	Mechanical Advantage (Load / Effort)
Compound Pulley (2)		¥	
Compound Pulley (4)			
Compound Pulley (6)			

Same chart you need to make for masses 2, masses 3 and masses 4.

- 2. Based on your observations, which pulley system has a larger mechanical advantage.
- 3. Based on your observations, what disadvantage does the compound pulley system exhibit?
- 4. The compound pulley system in the animation has 2,4,or 6 strands supporting the masses as it lifts. Sketch a pulley system that uses 3 strands to support a load. What would be its mechanical advantage?

Return to previous screen and then click on levers.

LEVER FAMILY:

Purpose: To investigate the mathematical relationship between Load, Effort, Load Arm and Effort Arm when a lever is balanced.

- Read the directions carefully. The left side is the LOAD (red).
 The right side is EFFORT (black).
- 2. Position the 4N(Load) at the 0.2 m position.
- 3. Position the masses (Effort) on the right side of the lever to attempt to balance the lever. *Test.* If the lever is balanced, record the results in the table below.
- 4. Repeat with the load at the 0.40m and 0.6m mark to complete the table. For the third mass use two EFFORT masses.

Trial	One	Two	8N .6m	
F _{L Load}	4N	4N		
d _{L Load Arm}	0.2 m	0.4 m		
F _{E Effort}				14
d _{E Effort Arm}				, 444
F _L xd _L		1		:
F _E xd _E			+ S4	ζ4.,

*Note: Trial Three requires two masses (Efforts) to balance.

Analysis: